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Chapter 1.1: Individual causal effects

“The purpose of this chapter is to introduce mathematical

notation that formalizes the causal intuition that you already

possess.”

Some notation

Dichotomous treatment variable: A (1: treated; 0: untreated)

Dichotomous outcome variable: Y (1: death; 0: survival)

Y a=i : Outcome under treatment a = i , i ∈ {0, 1}.

Definition

Causal effect for an individual: Treatment A has a causal effect if

Y a=1 6= Y a=0.

However, in general, individual effects cannot be identified.
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Chapter 1.2: Average causal effects

Definition

Average causal effect is present if

Pr(Y a=1 = 1) 6= Pr(Y a=0 = 1).

More generally (nondichotomous outcomes):

E(Y a=1) 6= E(Y a=0).
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Chapter 1.2: Average causal effects

Definition

Average causal effect is present if

Pr(Y a=1 = 1) 6= Pr(Y a=0 = 1).

More generally (nondichotomous outcomes):

E(Y a=1) 6= E(Y a=0).

What we would like to observe:

Pr(Y a=1 = 1)− Pr(Y a=0 = 1) (Causal risk difference)

Pr(Y a=1 = 1)

Pr(Y a=0 = 1)
(Causal risk ratio)

Pr(Y a=1 = 1)/Pr(Y a=1 = 0)

Pr(Y a=0 = 1)/Pr(Y a=0 = 0)
(Causal odds ratio)
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Chapter 1.5: Causation versus association

Pr(Y = 1|A = 1) is a conditional, Pr(Y a = 1) an unconditional probability.

A definition of causal effect 11

We say that treatment  and outcome  are dependent or associated when

Pr[ = 1| = 1] 6= Pr[ = 1| = 0]. In our population, treatment andFor a continuous outcome  we

define mean independence between

treatment and outcome as:

E[ | = 1] = E[ | = 0]
Independence and mean indepen-

dence are the same concept for di-

chotomous outcomes.

outcome are indeed associated because Pr[ = 1| = 1] = 713 and Pr[ =

1| = 0] = 37. The associational risk difference, risk ratio, and odds ratio

(and other measures) quantify the strength of the association when it exists.

They measure the association on different scales, and we refer to them as

association measures. These measures are also affected by random variability.

However, until Chapter 10, we will disregard statistical issues by assuming that

the population in Table 1.2 is extremely large.

For dichotomous outcomes, the risk equals the average in the population,

and we can therefore rewrite the definition of association in the population as

E [ | = 1] 6= E [ | = 0]. For continuous outcomes  , we can also define
association as E [ | = 1] 6= E [ | = 0]. Under this definition, association is
essentially the same as the statistical concept of correlation between  and a

continuous  .

In our population of 20 individuals, we found (i) no causal effect after com-

paring the risk of death if all 20 individuals had been treated with the risk of

death if all 20 individuals had been untreated, and (ii) an association after com-

paring the risk of death in the 13 individuals who happened to be treated with

the risk of death in the 7 individuals who happened to be untreated. Figure

1.1 depicts the causation-association difference. The population (represented

by a diamond) is divided into a white area (the treated) and a smaller grey

area (the untreated). The definition of causation implies a contrast between

the whole white diamond (all subjects treated) and the whole grey diamond

(all subjects untreated), whereas association implies a contrast between the

white (the treated) and the grey (the untreated) areas of the original diamond.

Population of interest

Treated Untreated

Causation Association

vs.vs.

EYa1 EYa0 EY|A  1 EY|A  0

Figure 1.1

We can use the notation we have developed thus far to formalize the dis-

tinction between causation and association. The risk Pr[ = 1| = ] is a

conditional probability: the risk of  in the subset of the population that

meet the condition ‘having actually received treatment value ’ (i.e.,  = ).

In contrast the risk Pr[  = 1] is an unconditional–also known as marginal–

probability, the risk of   in the entire population. Therefore, association is

defined by a different risk in two disjoint subsets of the population determined

Figure : Association-causation difference (Figure 1.1 in the book)
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Chapter 2: Randomized experiments

“This chapter describes why randomization results in convincing

causal inferences.”

Exchangeability

Means that the outcome would be the same in both study groups if

both received the treatment or if both did not receive it.

Formally: Exchangeability, Y a
∐

A for a ∈ {0, 1}, holds if

Pr(Y a=0 = 1) = Pr(Y a=0 = 1|A = 0)︸ ︷︷ ︸
Observable

= Pr(Y a=0 = 1|A = 1)︸ ︷︷ ︸
Counterfactual

,

Pr(Y a=1 = 1) = Pr(Y a=1 = 1|A = 0)︸ ︷︷ ︸
Counterfactual

= Pr(Y a=1 = 1|A = 1)︸ ︷︷ ︸
Observable

.
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Chapter 2: Randomized experiments

Randomization is expected to produce exchangeability.

Hence, in ideal randomized experiments, association is causation.

Conditional exchangeability: Y a
∐

A|L.

Present if exchangeability holds within the levels of variable L.

How can the CRR be computed in a conditionally randomized

experiment?

 Standardization or inverse probability weighting!

Standardization

CRR =
Pr(Y a=1 = 1)

Pr(Y a=0 = 1)
=

∑
l Pr(Y = 1|L = l ,A = 1)Pr(L = l)∑
l Pr(Y = 1|L = l ,A = 0)Pr(L = l)
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Chapter 3: Observational Studies

Identifiability conditions for causal inference

Three conditions must hold so that an observational study can be

conceptualized as a conditionally randomized experiment:

1 The values of treatment under comparison correspond to well-defined

interventions.

2 The conditional probability of receiving every value of treatment,

though not decided by the investigators, depends only on the

measured covariates.

3 The conditional probability of receiving every value of treatment is

greater than zero, i.e., positive.

If these three (identifiability) conditions hold,

“. . . causal effects can be identified from observational studies by

using IP weighting or standardization.”
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Chapter 4: Effect Modification

Effect modification (EM)

We say that M is a modifier of the effect of A on Y when the average

causal effect of A on Y varies across levels of M.

Since the average causal effect can be measured using different effect

measures (e.g., risk difference, risk ratio), the presence of effect

modification depends on the effect measure being used:

Additive EM: E(Y a=1 − Y a=0|M = 1)

6= E(Y a=1 − Y a=0|M = 0)

Multiplicative EM:
E(Y a=1|M = 1)

E(Y a=0|M = 1)
6= E(Y a=1|M = 0)

E(Y a=0|M = 0)
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Hernán & Robins: Causal Inference.

Chapter 5: Interaction

5.1 Interaction requires a joint intervention

5.2 Identifying interaction

5.3 Counterfactual response types and interaction

5.4 Sufficient causes

5.5 Sufficient cause interaction

5.6 Counterfactuals or sufficient-component causes?
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“Looking up at the sky”: Version III

“Does one’s looking up at the sky make other pedestrians look up too?”

The causal question could be about more than one treatment:

Random assignment of you looking up.

Random assignment of you standing in the street dressed or naked.

If causal effect of you looking up differs from being dressed to being

naked  Both “treatments” interact.

“This chapter provides a formal definition of interaction between

two treatments, both within our (. . . ) counterfactual framework

and within the sufficient-component-cause framework.”
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5.1 Interaction requires a joint intervention

Joint interventions

Interventions on two or more treatments.

For example:

Y : Death (1: yes; 0: no),

A: Heart transplant (1: yes; 0: no),

E : Multivitamin complex (1: yes; 0: no)

There are 4 counterfactual observations:

Y a=1,e=1,Y a=1,e=0,Y a=0,e=1,Y a=0,e=0.

Definition

There is interaction between A and E if the causal effect of A differs from

E = 0 to E = 1 (and viceversa).
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5.1 Interaction requires a joint intervention

Interaction on the additive scale

There is interaction on the additive scale if

Pr(Y a=1,e=1 = 1)− Pr(Y a=0,e=1 = 1) 6= Pr(Y a=1,e=0 = 1)− Pr(Y a=0,e=0 = 1),

which is equivalent to

Pr(Y a=1,e=1 = 1)− Pr(Y a=0,e=0 = 1)

6=
(
Pr(Y a=0,e=1 = 1)− Pr(Y a=0,e=0 = 1)

)
+

(
Pr(Y a=1,e=0 = 1)− Pr(Y a=0,e=0 = 1)

)
.

Interaction on the multiplicative scale

Pr(Y a=1,e=1 = 1)

Pr(Y a=0,e=0 = 1)
6= Pr(Y a=0,e=1 = 1)

Pr(Y a=0,e=0 = 1)
× Pr(Y a=1,e=0 = 1)

Pr(Y a=0,e=0 = 1)
.
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5.1 Interaction requires a joint intervention

Comments:

There may be interaction on the additive but not on the

multiplicative scale or viceversa.

For example:

Pr(Y a=0,e=0 = 1) = 0.1, Pr(Y a=1,e=0 = 1) = 0.2,

Pr(Y a=0,e=1 = 1) = 0.7, Pr(Y a=1,e=1 = 1) = 0.8.

Difference between effect modification and interaction:

A and M are not variables of equal status; only A can be intervened.

There are no counterfactual observations Y a,m.
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5.2 Identifying interaction

“. . . identifying interaction requires exchangeability, positivity, and

well-defined interventions for both treatments.”

In case E is randomly assigned, E = 1 and E = 0 are expected to be

exchangeable and

Pr(Y a=1,e=1 = 1) = Pr(Y a=1 = 1|E = 1).

Hence, the definition of interaction on the additive scale can be rewritten:

Pr(Y a=1 = 1|E = 1)− Pr(Y a=0 = 1|E = 1)

6= Pr(Y a=1 = 1|E = 0)− Pr(Y a=0 = 1|E = 0).

That is, “. . . when treatment E is randomly assigned, then the concepts of

interaction and effect modification coincide.”
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5.2 Identifying interaction

If E is not assigned by investigators,

Pr(Y a,e = 1) need to be computed.

Can be done “under the usual identifying assumptions, by

standardization or IP weighting conditional on the measured

covariates.”

A and E can be seen as a combined treatment with 4 possible levels.

Identification of interaction is not different from the identification of

the causal effect of one treatment.
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5.2 Identifying interaction

If exchangeability can be assumed for A but not for E

“. . . one cannot generally assess the presence of interaction between A

and E , but can still assess the presence of effect modification by E .”

“This is so because one does not need any identifying assumptions

involving E to compute the effect of A in each of the strata defined

by E .”

Following, the concepts reviewed require that counterfactuals

“(. . . ) are assumed to be deterministic, and that treatments and

outcomes are dichotomous. This oversimplification, though not

necessary, makes the study of these concepts manageable and

helps clarify some issues . . . .”
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5.3 Counterfactual response types and

interaction

Classification of individuals according to their counterfactual responses:

Table 5.1 Possible response types

Type Ya=0 Ya=1

Doomed 1 1

Preventative 1 0

Causative 0 1

Immune 0 0

In case of two dichotomous treatments, there are 16 possible response

types.
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5.3 Counterfactual response types and

interaction

Table 5.2 Responses Y a,e for each a, e value

Type 1,1 0,1 1,0 0,0 Type 1,1 0,1 1,0 0,0

1 1 1 1 1 9 0 1 1 1

2 1 1 1 0 10 0 1 1 0

3 1 1 0 1 11 0 1 0 1

4 1 1 0 0 12 0 1 0 0

5 1 0 1 1 13 0 0 1 1

6 1 0 1 0 14 0 0 1 0

7 1 0 0 1 15 0 0 0 1

8 1 0 0 0 16 0 0 0 0
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5.3 Counterfactual response types and

interaction

Classification of response types:

Types 1 and 16: Neither A nor E have any effect on Y .

Types 4, 6, 11, and 13: Causal effects of A and E are independent.

If the population only consisted of types 1, 4, 6, 11, 13, and 16, there

would be no interaction between A and E on the additive scale.

For interaction to be present there must be individuals in, at least,
one of the following classes:

I Types 8, 12, 14, 15: Y = 1 under 1 of the 4 treatment combinations.

I Type 7 (Y a=1,e=1 = 1, Y a=0,e=0 = 1, Y = 0 otherwise),

Type 10 (Y a=1,e=0 = 1, Y a=0,e=1 = 1, Y = 0 otherwise).

I Types 2, 3, 5, 9: Y = 1 under 3 of the 4 treatment combinations.
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5.4 Sufficient causes

Tool to represent the causal mechanisms involved in the interaction

between two treatments.

An oversimplified example:

A = 1 and set of background factors U1 = 1 cause death,

A = 0 and set of background factors U2 = 1 cause death,

“Doomed” individuals: U0 = 1 cause death.

Figure : Hernán & Robins: Figure 5.1
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5.4 Sufficient causes

In case of two treatments, there are nine possible sufficient causes (not all

of them exist necessarily):

Figure : Hernán & Robins: Figure 5.2
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5.5 Sufficient cause interaction

“. . . the definition of interaction within the counterfactual framework

does not require any knowledge about those mechanisms nor even

that the treatments work together.”

Sufficient cause interaction: “. . . concept of interaction that perhaps

brings us one step closer to the causal mechanisms by which

treatments A and E bring about the outcome.”

Exists if A and E occur together in a sufficient cause. For example

(Figure 5.2), if there are individuals in the population with U5 = 1.

The previous example is equivalent to the presence of individuals with

Y a=1,e=1 = 1 and Y a=1,e=0 = Y a=0,e=1 = 0.

“Unlike the counterfactual definition of interaction, sufficient cause

interaction makes explicit reference to the causal mechanisms

involving the treatments.”
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5.6 Counterfactuals or sufficient-component

causes?

“The sufficient-component-cause framework and the counterfactual

(potential outcomes) framework address different questions.”

The counterfactual approach addresses the question “What

happens?”, the sufficient-component-cause, “How does it happen?”

“Though the sufficient-component-cause framework is useful from a

pedagogic standpoint, its relevance to actual data analysis is yet to be

determined. In its classical form, the sufficient-component-cause

framework is deterministic, its conclusions depend on the coding on

the outcome, and is by definition limited to dichotomous treatments

and outcomes.”

“To estimate causal effects more generally, the counterfactual

framework will likely continue to be the one most often employed.”.

CONTINUARÁ. . .
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The counterfactual approach addresses the question “What

happens?”, the sufficient-component-cause, “How does it happen?”

“Though the sufficient-component-cause framework is useful from a

pedagogic standpoint, its relevance to actual data analysis is yet to be

determined. In its classical form, the sufficient-component-cause

framework is deterministic, its conclusions depend on the coding on

the outcome, and is by definition limited to dichotomous treatments

and outcomes.”

“To estimate causal effects more generally, the counterfactual

framework will likely continue to be the one most often employed.”.
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