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CHAPTER 1.1: INDIVIDUAL CAUSAL EFFECTS

“The purpose of this chapter is to introduce mathematical
notation that formalizes the causal intuition that you already
possess.”

Some notation
@ Dichotomous treatment variable: A (1: treated; 0: untreated)
@ Dichotomous outcome variable: Y (1: death; 0: survival)

e Y?=: Qutcome under treatment a = i, i € {0,1}.
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possess.”
Some notation
@ Dichotomous treatment variable: A (1: treated; 0: untreated)
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Causal effect for an individual: Treatment A has a causal effect if

Ya=1 ;é ya=0‘
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CHAPTER 1.1: INDIVIDUAL CAUSAL EFFECTS

“The purpose of this chapter is to introduce mathematical
notation that formalizes the causal intuition that you already
possess.”
Some notation
@ Dichotomous treatment variable: A (1: treated; 0: untreated)
@ Dichotomous outcome variable: Y (1: death; 0: survival)

e Y?=: Qutcome under treatment a = i, i € {0,1}.

DEFINITION

Causal effect for an individual: Treatment A has a causal effect if

Ya=1 ;é Ya=0‘

However, in general, individual effects cannot be identified.
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CHAPTER 1.2: AVERAGE CAUSAL EFFECTS

DEFINITION
Average causal effect is present if

Pr(Ya=! =1) £ Pr(Y*0 =1).
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DEFINITION
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E(Y*™) #E(Y*0).
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CHAPTER 1.2: AVERAGE CAUSAL EFFECTS

DEFINITION
Average causal effect is present if

Pr(Y?=' =1) # Pr(Y*=" =1).
More generally (nondichotomous outcomes):

E(Y?71) #£ E(Y*0).

What we would like to observe:
Pr(Y?=1 =1) = Pr(Y*=® =1)  (Causal risk difference)

Pr(Ya=l =1
P:EY":O:ZL; (Causal risk ratio)

Pr(Y®=! =1)/Pr(Y==! = 0) _
Pr(Y2=0 = 1)/Pr(Y+=0 = 0) (Causal odds ratio)
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CHAPTER 1.2: AVERAGE CAUSAL EFFECTS

DEFINITION
Average causal effect is present if

Pr(Y?=' =1) # Pr(Y*=" =1).
More generally (nondichotomous outcomes):

E(Y?71) #£ E(Y*0).

What we can estimate:

Pr(Y =1|A=1) = Pr(Y =1|A=0) (Associational risk difference)
Pr(Y =1A=1
p:Ey — 1:A _ ; (Associational risk ratio)
Pr(Y = 1A = 1)/Pr(Y =0]A=1) N |

A tional odds rat
Pr(Y = 1|JA=0)/Pr(Y = 0|/A = 0) (Associational odds ratio)
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CHAPTER 1.5: CAUSATION VERSUS ASSOCIATION

Pr(Y = 1|A = 1) is a conditional, Pr(Y? = 1) an unconditional probability.

=] = = = Q>
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CHAPTER 1.5: CAUSATION VERSUS ASSOCIATION
Pr(Y = 1|A = 1) is a conditional, Pr(Y? = 1) an unconditional probability.

Population of interest

Treated Untreated
Causation Association
E[Ya1] E[Ya0] E[Y|A = 1] E[Y|A = 0]

FIGURE : Association-causation difference (Figure 1.1 in the book)
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CHAPTER 2: RANDOMIZED EXPERIMENTS

“This chapter describes why randomization results in convincing
causal inferences.”
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CHAPTER 2: RANDOMIZED EXPERIMENTS

“This chapter describes why randomization results in convincing
causal inferences.”

EXCHANGEABILITY
@ Means that the outcome would be the same in both study groups if
both received the treatment or if both did not receive it.

Part 1 (Hernan & Robins) Causal inference 30t April, 2014 6 /19



CHAPTER 2: RANDOMIZED EXPERIMENTS

“This chapter describes why randomization results in convincing

causal inferences.”

EXCHANGEABILITY

@ Means that the outcome would be the same in both study groups if
both received the treatment or if both did not receive it.

e Formally: Exchangeability, Y?]] A for a € {0, 1}, holds if

Pr(Y>=0=1)=Pr(Y* " =1]A=0)

~

Observable

Pr(Y?=l =1) = Pr(Y*=1 = 1|A=0)

Counterfactual

=Pr(Y* " =1]A=1),

Counterfactual

=Pr(Y*=l=1A=1).

7

Observable
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CHAPTER 2: RANDOMIZED EXPERIMENTS

@ Randomization is expected to produce exchangeability.
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CHAPTER 2: RANDOMIZED EXPERIMENTS

@ Randomization is expected to produce exchangeability.

@ Hence, in ideal randomized experiments, association is causation.
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CHAPTER 2: RANDOMIZED EXPERIMENTS

@ Randomization is expected to produce exchangeability.
@ Hence, in ideal randomized experiments, association is causation.

e Conditional exchangeability: Y?]] A|L.
Present if exchangeability holds within the levels of variable L.
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CHAPTER 2: RANDOMIZED EXPERIMENTS

@ Randomization is expected to produce exchangeability.
@ Hence, in ideal randomized experiments, association is causation.

e Conditional exchangeability: Y2 ][] A|L.
Present if exchangeability holds within the levels of variable L.
@ How can the CRR be computed in a conditionally randomized
experiment?
~» Standardization or inverse probability weighting!
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CHAPTER 2: RANDOMIZED EXPERIMENTS

@ Randomization is expected to produce exchangeability.
@ Hence, in ideal randomized experiments, association is causation.

e Conditional exchangeability: Y2 ][] A|L.
Present if exchangeability holds within the levels of variable L.
@ How can the CRR be computed in a conditionally randomized
experiment?

~» Standardization or inverse probability weighting!

@ Standardization

Pr(Y==t=1) > ,Pr(Y=1L=1,A=1)Pr(L=1)
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HERNAN & ROBINS: CAUSAL INFERENCE.

CHAPTER 3: OBSERVATIONAL STUDIES
3.1 The randomized experiment paradigm

3.2 Exchangeability
3.3 Positivity
3.4 Well-defined interventions

3.5 Well-defined interventions are a pre-requisite for causal inference

3.6 Causation or prediction
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“LOOKING UP AT THE SKY”: VERSION II

“Does one's looking up at the sky make other pedestrians look up too?”
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“LOOKING UP AT THE SKY”: VERSION II

“Does one's looking up at the sky make other pedestrians look up too?”
An observational study:

@ Find pedestrian that is not looking up.
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An observational study:
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o Identify 2nd pedestrian walking towards him/her.
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“Does one's looking up at the sky make other pedestrians look up too?”
An observational study:

@ Find pedestrian that is not looking up.
o Identify 2nd pedestrian walking towards him/her.
@ Record behavior in next 10 seconds.
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“LOOKING UP AT THE SKY”: VERSION II

“Does one's looking up at the sky make other pedestrians look up too?”
An observational study:

@ Find pedestrian that is not looking up.

o Identify 2nd pedestrian walking towards him/her.

@ Record behavior in next 10 seconds.

o Compare Pr(279 |. up|1%t I. up) with Pr(2"? I. up|1% I. not up).
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“LOOKING UP AT THE SKY”: VERSION II

“Does one's looking up at the sky make other pedestrians look up too?”
An observational study:
@ Find pedestrian that is not looking up.
o Identify 2nd pedestrian walking towards him/her.
@ Record behavior in next 10 seconds.
o Compare Pr(279 |. up|1%t I. up) with Pr(2"? I. up|1% I. not up).
“This chapter reviews some conditions under which observational
studies lead to valid causal inferences.”
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3.1 THE RANDOMIZED EXPERIMENT PARADIGM

IDENTIFIABILITY CONDITIONS FOR CAUSAL INFERENCE

Three conditions must hold so that an observational study can be
conceptualized as a conditionally randomized experiment:

@ The values of treatment under comparison correspond to well-defined
interventions.
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3.1 THE RANDOMIZED EXPERIMENT PARADIGM

IDENTIFIABILITY CONDITIONS FOR CAUSAL INFERENCE
Three conditions must hold so that an observational study can be
conceptualized as a conditionally randomized experiment:

@ The values of treatment under comparison correspond to well-defined
interventions.

@ The conditional probability of receiving every value of treatment,
though not decided by the investigators, depends only on the
measured covariates.

Part 1 (Hernan & Robins) Causal inference 30t April, 2014 10 / 19



3.1 THE RANDOMIZED EXPERIMENT PARADIGM

IDENTIFIABILITY CONDITIONS FOR CAUSAL INFERENCE
Three conditions must hold so that an observational study can be
conceptualized as a conditionally randomized experiment:

@ The values of treatment under comparison correspond to well-defined
interventions.

@ The conditional probability of receiving every value of treatment,
though not decided by the investigators, depends only on the
measured covariates.

© The conditional probability of receiving every value of treatment is
greater than zero, i.e., positive.
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3.1 THE RANDOMIZED EXPERIMENT PARADIGM

IDENTIFIABILITY CONDITIONS FOR CAUSAL INFERENCE
Three conditions must hold so that an observational study can be
conceptualized as a conditionally randomized experiment:

@ The values of treatment under comparison correspond to well-defined
interventions.

@ The conditional probability of receiving every value of treatment,
though not decided by the investigators, depends only on the
measured covariates.

© The conditional probability of receiving every value of treatment is
greater than zero, i.e., positive.

If these three (identifiability) conditions hold,

“ .. causal effects can be identified from observational studies by
using IP weighting or standardization.”
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3.1 THE RANDOMIZED EXPERIMENT PARADIGM
Comments:
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3.1 THE RANDOMIZED EXPERIMENT PARADIGM

Comments:

@ Other possible approach to causal inference: “...hoping that a
predictor of treatment, referred to as an instrumental variable, was

randomly assigned conditional on the measured covariates.”
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@ What we should do: Describe carefully

(1) “the randomized experiment that we would like to, but cannot,
conduct.”
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3.1 THE RANDOMIZED EXPERIMENT PARADIGM

Comments:

@ Other possible approach to causal inference: “...hoping that a
predictor of treatment, referred to as an instrumental variable, was
randomly assigned conditional on the measured covariates.”

@ What we should do: Describe carefully

(1) “the randomized experiment that we would like to, but cannot,
conduct.”
(11) “how the observational study emulates that randomized experiment.”
@ “In ideal randomized experiments, the data contain sufficient
information to identify causal effects. In contrast, (...), the
information contained in observational data is insufficient to identify
causal effects.”
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3.1 THE RANDOMIZED EXPERIMENT PARADIGM

Comments:

@ Other possible approach to causal inference: “...hoping that a
predictor of treatment, referred to as an instrumental variable, was
randomly assigned conditional on the measured covariates.”

@ What we should do: Describe carefully

(1) “the randomized experiment that we would like to, but cannot,
conduct.”
(11) “how the observational study emulates that randomized experiment.”
@ “In ideal randomized experiments, the data contain sufficient
information to identify causal effects. In contrast, (...), the
information contained in observational data is insufficient to identify
causal effects.”

@ Two sources of information are required: data and identifiability
assumptions.
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3.2 EXCHANGEABILITY

THE “REAL WORLD”’ EXAMPLE WITH A 3RD VARIABLE

L AY L AY
Rheia 0 0 O Leto 1 0 0
Kronos 0 0 1 Ares 1 1 1
Demeter 0 0 O Athena 1 1 1
Hades 0 0 O Hephaestus 1 1 1
Hestia 0 1 0 Aphrodite 1 1 1
Poseidon 0 1 O Cyclope 1 1 1
Hera 0 1 O Persephone 1 1 1
Zeus 0 1 1 Hermes 1 1 0
Artemis 1 0 1 Hebe 1 1 0
Apollo 1 0 1 Dionysus 1 1 0

L is supposed to be a prognosis factor (1, critical situation; 0, otherwise).
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3.2 EXCHANGEABILITY

o If L is the only outcome predictor with unequal distribution in A =10
and A =1, then Y?]J A|L holds.
~> Standardization or inverse probability weighting to estimate CRR.
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o If L is the only outcome predictor with unequal distribution in A =10
and A =1, then Y?]J A|L holds.
~> Standardization or inverse probability weighting to estimate CRR.

@ But: In observational studies, the value of A likely depends on some

outcome predictors (L, Lo, ... ).
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@ Crucial question: Are all L; with unequal distribution among
treatment groups observed?
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o If L is the only outcome predictor with unequal distribution in A =10
and A =1, then Y?]J A|L holds.
~> Standardization or inverse probability weighting to estimate CRR.

@ But: In observational studies, the value of A likely depends on some
outcome predictors (L, Lo, ... ).

@ Crucial question: Are all L; with unequal distribution among
treatment groups observed?
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guarantee that Y? ][ A|L holds.
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3.2 EXCHANGEABILITY

o If L is the only outcome predictor with unequal distribution in A =10
and A =1, then Y?]J A|L holds.
~> Standardization or inverse probability weighting to estimate CRR.

@ But: In observational studies, the value of A likely depends on some
outcome predictors (L, Lo, ... ).

@ Crucial question: Are all L; with unequal distribution among
treatment groups observed?

@ We cannot know the answer to the previous question. There is no
guarantee that Y? ][ A|L holds.

@ “Thus when we analyze an observational study under the assumption
of conditional exchangeability, we must hope that the assumption is
at least approximately true.”

Part 1 (Hernan & Robins) Causal inference 30t April, 2014 13 /19



FINE POINT 3.1: ATTRIBUTABLE FRACTION

Measure that compares observed risk with counterfactual risk (under either

a=0ora=1):
) Pr(Y=1)—-Pr(Y?=1)
Pr(Y =1)
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FINE POINT 3.1: ATTRIBUTABLE FRACTION

Measure that compares observed risk with counterfactual risk (under either

a=0ora=1):
) Pr(Y=1)—-Pr(Y?=1)
Pr(Y =1)

Example:

@ 10 individuals receive ambrosia (A = 1), 10 receive nectar (A = 0).
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FINE POINT 3.1: ATTRIBUTABLE FRACTION

Measure that compares observed risk with counterfactual risk (under either

a=0ora=1):
) Pr(Y=1)—-Pr(Y?=1)
Pr(Y =1)

Example:
@ 10 individuals receive ambrosia (A = 1), 10 receive nectar (A = 0).
o Next day: Pr(sick|A =1) =7/10, Pr(sick]A = 0) = 1/10.
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FINE POINT 3.1: ATTRIBUTABLE FRACTION

Measure that compares observed risk with counterfactual risk (under either

a=0ora=1):
) Pr(Y=1)—-Pr(Y?=1)
Pr(Y =1)

Example:
@ 10 individuals receive ambrosia (A = 1), 10 receive nectar (A = 0).
o Next day: Pr(sick|A =1) =7/10, Pr(sick]A = 0) = 1/10.

@ Assuming exchangeability:

CRR=0.7/0.1=7, CRD=0.7—-0.1=0.6.
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FINE POINT 3.1: ATTRIBUTABLE FRACTION

Measure that compares observed risk with counterfactual risk (under either

a=0ora=1):
) Pr(Y=1)—-Pr(Y?=1)
Pr(Y =1)

Example:
e 10 individuals receive ambrosia (A = 1), 10 receive nectar (A = 0).
o Next day: Pr(sick|A =1) =7/10, Pr(sicklA=0) = 1/10.

@ Assuming exchangeability:
CRR=0.7/0.1=7, CRD=0.7—-0.1=0.6.

@ What fraction of cases is attributable to A =17

Pr(Y =1) — Pr(Y?=0 =1)
Pr(Y =1)

— (0.4 —0.1)/0.4 = 0.75.
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3.3 POSITIVITY

o Positivity condition: In an experiment, the CRR can only be
estimated if some subjects are assigned to each treatment level.
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3.3 POSITIVITY

o Positivity condition: In an experiment, the CRR can only be
estimated if some subjects are assigned to each treatment level.

@ Positivity holds if

Pr(A = a|L = 1) >0,V with Pr(L = /) # 0.
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3.3 POSITIVITY

o Positivity condition: In an experiment, the CRR can only be
estimated if some subjects are assigned to each treatment level.

@ Positivity holds if
Pr(A=alL=1)> 0,V/ with Pr(L=1) # 0.

o If exchangeability is achieved conditional on some variables, then
positivity must only hold for these.
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3.3 POSITIVITY

o Positivity condition: In an experiment, the CRR can only be
estimated if some subjects are assigned to each treatment level.

@ Positivity holds if
Pr(A=alL=1)> 0,V/ with Pr(L=1) # 0.

o If exchangeability is achieved conditional on some variables, then
positivity must only hold for these.

@ In observational studies, neither positivity nor exchangeability are
guaranteed.
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3.3 POSITIVITY

o Positivity condition: In an experiment, the CRR can only be
estimated if some subjects are assigned to each treatment level.

@ Positivity holds if
Pr(A=alL=1)> 0,V/ with Pr(L=1) # 0.

o If exchangeability is achieved conditional on some variables, then
positivity must only hold for these.

@ In observational studies, neither positivity nor exchangeability are
guaranteed.

@ Standardization and IP weighted risk are only meaningful if positivity
holds.
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3.3 POSITIVITY
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3.4 WELL-DEFINED INTERVENTIONS

@ If multiple versions of a treatment are present, the interventions are
not well defined.
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3.4 WELL-DEFINED INTERVENTIONS

@ If multiple versions of a treatment are present, the interventions are
not well defined.

@ “...treatment-variation irrelevance may be reasonable in ideal

randomized studies ..." but in observational studies, the

investigators may not have control over the versions of the treatment.
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3.4 WELL-DEFINED INTERVENTIONS

@ If multiple versions of a treatment are present, the interventions are
not well defined.

@ ‘. ..treatment-variation irrelevance may be reasonable in ideal
randomized studies ..." but in observational studies, the
investigators may not have control over the versions of the treatment.

@ “Because treatment-variation irrelevance cannot be taken for granted
in observational studies, the interpretation of the causal effect is not
always straightforward. At the very least, investigators need to
characterize the versions of treatment that operate in the population.”
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@ ‘. ..treatment-variation irrelevance may be reasonable in ideal

randomized studies ..." but in observational studies, the

investigators may not have control over the versions of the treatment.

@ “Because treatment-variation irrelevance cannot be taken for granted
in observational studies, the interpretation of the causal effect is not
always straightforward. At the very least, investigators need to
characterize the versions of treatment that operate in the population.”

@ Section 3.5: Well-defined interventions are a pre-requisite for causal
inference.
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3.4 WELL-DEFINED INTERVENTIONS

@ If multiple versions of a treatment are present, the interventions are
not well defined.

@ ‘. ..treatment-variation irrelevance may be reasonable in ideal

randomized studies ..." but in observational studies, the

investigators may not have control over the versions of the treatment.

@ “Because treatment-variation irrelevance cannot be taken for granted
in observational studies, the interpretation of the causal effect is not
always straightforward. At the very least, investigators need to
characterize the versions of treatment that operate in the population.”

@ Section 3.5: Well-defined interventions are a pre-requisite for causal
inference.

@ "“The problems generated by unspecified interventions cannot be dealt
with by applying sophisticated statistical methods.”
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3.6 CAUSATION OR PREDICTION

@ “Is everything lost when the observational data cannot be used to
emulate an interesting randomized experiment? Not really.
Observational data may still be quite useful by focusing on
prediction.”
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3.6 CAUSATION OR PREDICTION

@ “Is everything lost when the observational data cannot be used to
emulate an interesting randomized experiment? Not really.

Observational data may still be quite useful by focusing on
prediction.”

@ However, “when causal inference is the ultimate goal, prediction may
be unsatisfying.”
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Identifiability of causal effects
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FINE PoINT 3.4
Identifiability of causal effects

@ "...an average causal effect is (non parametrically) identifiable when
the distribution of the observed data is compatible with a single
value of the effect measure.”
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FINE PoINT 3.4
Identifiability of causal effects

@ "...an average causal effect is (non parametrically) identifiable when
the distribution of the observed data is compatible with a single
value of the effect measure.”

@ It is nonidentifiable, when the observed data are compatible with
several values of the effect measure.

o If the data from the table on slide 12 come from an observational
study without the assumption of Y]] A|L, then they are consistent
with a CRR
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Identifiability of causal effects

@ "...an average causal effect is (non parametrically) identifiable when
the distribution of the observed data is compatible with a single
value of the effect measure.”

@ It is nonidentifiable, when the observed data are compatible with
several values of the effect measure.

o If the data from the table on slide 12 come from an observational
study without the assumption of Y]] A|L, then they are consistent
with a CRR

» < 1 if risk factors other than L are more frequent among A =1,
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FINE PoINT 3.4
Identifiability of causal effects

@ "...an average causal effect is (non parametrically) identifiable when
the distribution of the observed data is compatible with a single
value of the effect measure.”

@ It is nonidentifiable, when the observed data are compatible with
several values of the effect measure.
o If the data from the table on slide 12 come from an observational

study without the assumption of Y]] A|L, then they are consistent
with a CRR

» < 1 if risk factors other than L are more frequent among A =1,
» > 1 if risk factors other than L are more frequent among A =0,
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