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Purpose of Chapter 1:

“... is to introduce mathematical notation that formalizes the

causal intuition that you already possess.”
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Chapter 1.1: Individual causal effects

Some notation

Dichotomous treatment variable: A (1: treated; 0: untreated)

Dichotomous outcome variable: Y (1: death; 0: survival)

Y a=i : Outcome under treatment a = i , i ∈ {0, 1}.

Definition

Causal effect for an individual: Treatment A has a causal effect if

Y a=1 6= Y a=0.
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Chapter 1.1: Individual causal effects

Examples

Zeus: Y a=1 = 1 6= 0 = Y a=0 =⇒ treatment has causal effect.

Hera: Y a=1 = Y a=0 = 0 =⇒ treatment has no causal effect.

Definition

Consistency: If Ai = a, then Y a
i = Y Ai = Yi .

Important:

Y a=0 and Y a=1 are counterfactual outcomes.

Only one can be observed, i.e., only one is factual.

Hence, in general, individual effects cannot be identified.
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Chapter 1.2: Average causal effects

An example: Zeus’s extended family

Y a=0 Y a=1 Y a=0 Y a=1

Rheia 0 1 Leto 0 1

Kronos 1 0 Ares 1 1

Demeter 0 0 Athena 1 1

Hades 0 0 Hephaestus 0 1

Hestia 0 0 Aphrodite 0 1

Poseidon 1 0 Cyclope 0 1

Hera 0 0 Persephone 1 1

Zeus 0 1 Hermes 1 0

Artemis 1 1 Hebe 1 0

Apollo 1 0 Dionysus 1 0
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Chapter 1.2: Average causal effects

Definition

Average causal effect is present if

Pr(Y a=1 = 1) 6= Pr(Y a=0 = 1).

More generally (nondichotomous outcomes):

E(Y a=1) 6= E(Y a=0).

Example:

No average causal effect in Zeus’s family:

Pr(Y a=1 = 1) = Pr(Y a=0 = 1) = 10/20 = 0.5.

That does not imply the absence of individual effects.
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Fine Points

Fine point 1.1: Interference between subjects

Present if outcome depends on other subjects’ treatment value.

Implies that Y a
i is not well defined.

Book assumes “stable-unit-treatment-value assumption (SUTVA)”

(Rubin 1980)

Fine point 1.2: Multiple versions of treatment

Different versions of treatment could exist.

Implies that Y a
i is not well defined.

Authors assume “treatment variation irrelevance throughout this

book.”
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Chapter 1.3: Measures of causal effect

Representations of the causal null hypothesis

Pr(Y a=1 = 1)− Pr(Y a=0 = 1) = 0 (Causal risk difference)

Pr(Y a=1 = 1)

Pr(Y a=0 = 1)
= 1 (Causal risk ratio)

Pr(Y a=1 = 1)/Pr(Y a=1 = 0)

Pr(Y a=0 = 1)/Pr(Y a=0 = 0)
= 1 (Causal odds ratio)

The effect measures quantify the possible causal effect on different scales.
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Chapter 1.4: Random variability

Samples: Two sources of random error

Sampling variability:

We only dispose of P̂r(Y a=1 = 1) and P̂r(Y a=0 = 1). Statistical

procedures are necessary to test the causal null hypothesis.

Nondeterministic counterfactuals:

Counterfactual outcomes Y a=1 and Y a=0 may not be fixed, but

rather stochastic.

“Thus statistics is necessary in causal inference to quantify

random error from sampling variability, nondeterministic

counterfactuals, or both. However, for pedagogic reasons, we will

continue to largely ignore statistical issues until Chapter 10.”
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Chapter 1.5: Causation versus association

A “real world” example

A Y A Y A Y

Rheia 0 0 Zeus 1 1 Aphrodite 1 1

Kronos 0 1 Artemis 0 1 Cyclope 1 1

Demeter 0 0 Apollo 0 1 Persephone 1 1

Hades 0 0 Leto 0 0 Hermes 1 0

Hestia 1 0 Ares 1 1 Hebe 1 0

Poseidon 1 0 Athena 1 1 Dionysus 1 0

Hera 1 0 Hephaestus 1 1

Pr(Y = 1|A = 1) = 7/13 = 0.54, Pr(Y = 1|A = 0) = 3/7 = 0.43.
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Chapter 1.5: Causation versus association

Association measures

Pr(Y = 1|A = 1)− Pr(Y = 1|A = 0) (Associational risk difference)

Pr(Y = 1|A = 1)

Pr(Y = 1|A = 0)
(Associational risk ratio)

Pr(Y = 1|A = 1)/Pr(Y = 0|A = 1)

Pr(Y = 1|A = 0)/Pr(Y = 0|A = 0)
(Associational odds ratio)

If Pr(Y = 1|A = 1) = Pr(Y = 1|A = 0), then A
∐

Y (A,Y independent).

Example: ARD = 0.54− 0.43 = 0.11, ARR = 0.54/0.43 = 1.26.
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Chapter 1.5: Causation versus association

Pr(Y = 1|A = 1) is a conditional, Pr(Y a = 1) an unconditional probability.

A definition of causal effect 11

We say that treatment  and outcome  are dependent or associated when

Pr[ = 1| = 1] 6= Pr[ = 1| = 0]. In our population, treatment andFor a continuous outcome  we

define mean independence between

treatment and outcome as:

E[ | = 1] = E[ | = 0]
Independence and mean indepen-

dence are the same concept for di-

chotomous outcomes.

outcome are indeed associated because Pr[ = 1| = 1] = 713 and Pr[ =

1| = 0] = 37. The associational risk difference, risk ratio, and odds ratio

(and other measures) quantify the strength of the association when it exists.

They measure the association on different scales, and we refer to them as

association measures. These measures are also affected by random variability.

However, until Chapter 10, we will disregard statistical issues by assuming that

the population in Table 1.2 is extremely large.

For dichotomous outcomes, the risk equals the average in the population,

and we can therefore rewrite the definition of association in the population as

E [ | = 1] 6= E [ | = 0]. For continuous outcomes  , we can also define
association as E [ | = 1] 6= E [ | = 0]. Under this definition, association is
essentially the same as the statistical concept of correlation between  and a

continuous  .

In our population of 20 individuals, we found (i) no causal effect after com-

paring the risk of death if all 20 individuals had been treated with the risk of

death if all 20 individuals had been untreated, and (ii) an association after com-

paring the risk of death in the 13 individuals who happened to be treated with

the risk of death in the 7 individuals who happened to be untreated. Figure

1.1 depicts the causation-association difference. The population (represented

by a diamond) is divided into a white area (the treated) and a smaller grey

area (the untreated). The definition of causation implies a contrast between

the whole white diamond (all subjects treated) and the whole grey diamond

(all subjects untreated), whereas association implies a contrast between the

white (the treated) and the grey (the untreated) areas of the original diamond.

Population of interest

Treated Untreated

Causation Association

vs.vs.

EYa1 EYa0 EY|A  1 EY|A  0

Figure 1.1

We can use the notation we have developed thus far to formalize the dis-

tinction between causation and association. The risk Pr[ = 1| = ] is a

conditional probability: the risk of  in the subset of the population that

meet the condition ‘having actually received treatment value ’ (i.e.,  = ).

In contrast the risk Pr[  = 1] is an unconditional–also known as marginal–

probability, the risk of   in the entire population. Therefore, association is

defined by a different risk in two disjoint subsets of the population determined

Figure: Association-causation difference
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Chapter 1.5: Causation versus association

Concluding question:

“The question is then under which conditions real world data can

be used for causal inference.”

CONTINUARÁ. . .
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Chapter 2: Randomized experiments

1 Chapter 1: A definition of causal effect

2 Chapter 2: Randomized experiments
Introduction

2.1 Randomization

2.2 Conditional randomization

2.3 Standardization

2.4 Inverse probability weighting
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Does your looking up at the sky make other

pedestrians look up too?

I can stand on the sidewalk.
Flip a coin whenever someone approaches.

I If heads: I will look up intently
I If tails: I will look straight ahead with an absentminded expression

Repeat the experiment a few thousand times.
Count proportion of pedestrians who looked up within 10 seconds
after I did and who did not

I If Proplu > Propnlu: My looking up has a causal effect
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Was this solution a randomized experiment?

Yes

It was an experiment because...
I The investigator carried out the action of interest

It was randomized because...
I The decision to act on any study subject was made by a random device

Could not

You could have looked up when a man approached and looked

straight when a woman did

The assignment of the action would have followed a deterministic rule
I Up for woman
I Straight for man

Chapter 2:

“... describes why randomization results in convincing causal

inferences.”
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Refreshing the notation

Observations

Dichotomous treatment variable A
I A = 1: treated
I A = 0: untreated

Dichotomous outcome variable: Y
I Y = 1: death
I Y = 0: survival

Counterfactual outcomes

Y a=i : Outcome under treatment a = i , i ∈ {0, 1}.
I Y a=0 = 0: survival outcome under no treatment
I Y a=0 = 1: death outcome under no treatment
I Y a=1 = 0: survival outcome under treatment
I Y a=1 = 0: death outcome under treatment
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2.1 Randomization

Missing values of the counterfactual outcomes

Randomized experiments generate data with missing values (like any

other real world study)

Randomization ensures missing values occur by chance

A Y Y 0 Y 1 A Y Y 0 Y 1

Rheia 0 0 0 ? Leto 0 0 0 ?

Kronos 0 1 1 ? Ares 1 1 ? 1

Demeter 0 0 0 ? Athena 1 1 ? 1

Hades 0 0 0 ? Hephaestus 1 1 ? 1

Hestia 1 0 ? 0 Aphrodite 1 1 ? 1

Poseidon 1 0 ? 0 Cyclope 1 1 ? 1

Hera 1 0 ? 0 Persephone 1 1 ? 1

Zeus 1 1 ? 1 Hermes 1 0 ? 0

Artemis 0 1 1 ? Hebe 1 0 ? 0

Apollo 0 1 1 ? Dionysus 1 0 ? 0
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Ideal Randomized experiment

No loss of follow-up

Full adherence to the assigned treatment over the duration of the

study

A single version of treatment

Double blind assignment

Flip a coin for each subject

If heads: we assigned the subject to the white group

If tails: we assigned the subject to the grey group

white group= treated group

grey group = untreated group
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Exchangeability

What would have happened if the research assistants had misinterpreted

our instructions and had treated the grey group rather the white group?

How does this reversal of treatment status affect our conclusions?

Not at all.
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Exchangeability

Notation: Y a q A for all a

Meaning: The counterfactual outcome and the observed treatment are

independent.

i.e.: Treated and untreated would have experienced the same risk of death

if they had received the same treatment.
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Full and mean exchangeability
Full exchangeability

Randomization makes Y a independent of A⇒, but 6⇐, exchangeability.

Dichotomous outcome and treatment

Y a q A , can be written as...

Pr [Y a = 1|A = 1] = Pr [Y a = 1|A = 0] , or equivalently, as...

E [Y a|A = 1] = E [Y a|A = 0] for all a.

The last equality is the Mean Exchangeability.

Continuous outcome

Exchangeability Y a q A ...

⇒ Mean Exchangeability E [Y a|A = a′] = E [Y a]

but Mean Exchangeability 6⇒ exchangeability (because

distributional parameters other than the mean (e.g., variance) may

not be independent of treatment)
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Caution

Y a q A 6⇒ Y q A

Independence between counterfactual outcome and observed

treatment 6⇒ independence between observed outcome and

observed treatment.
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Example
Does exchangeability hold in the heart transplant study?

We would need to check if Y a q A holds for a = 1 and for a = 0

(Suppose the counterfactual data in Table 1.1 are available to us)
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Example (cont’d)
Does exchangeability hold in the heart transplant study?

Risk of death under no treatment in treated subjects:

PR[Y a=0 = 1|A = 1] = 7/13

Risk of death under no treatment in no treated subjects:

PR[Y a=0 = 1|A = 0] = 3/7

7/13 > 3/7 ⇒ treated subjects have worse prognosis

⇒ treated and untreated ARE NOT EXCHANGEABLE.
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Footnote

Only data in table 2.1 are available in the real world.

It is insufficient to compute counterfactual risks.

We are generally UNABLE to determine whether exchangeability holds in

our study.
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2.2 Conditional randomization

Example

Besides data on treatment (A) and outcome (Y), we also have data on the

prognosis factor (L)

Design 1:

1 Randomly select 65% of individuals
2 Transplant a new heart in selected individuals

Design 2:

1 Randomly select 75% of individuals with prognosis L = 1
2 Randomly select 50% of individuals with prognosis L = 0
3 Transplant a new heart in selected individuals
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Marginally and Conditionally Randomized

Experiments
Observations:

Both D1 and D2 are randomized experiments

D1 uses 1 coin:
I We use a single unconditional (marginal) randomization probability

common to all subjects
I D1 are marginally randomized experiments

D2 uses 2 different coins:
I We use several randomization probabilities that depend (are

conditionally) on the values of the variable L
I D2 are conditionally randomized experiments

D2 is simply the combination of two separate marginally randomized

experiments: one over subjects L = 1, the other in subjects with

L = 0.

Randomization produces either marginal exchangeability (D1) or

conditional exchangeability (D2).
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Missings

MCAR

In Marginally Randomized Experiments, the values of the counterfactual

outcomes are missing completely at random (MCAR).

MAR

In Conditionally Randomized Experiments, the values of the counterfactual

outcomes are not MCAR, but they are missing at random (MAR)

conditional on the covariate L.
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2.3 Standardization
Heart transplant study, L = 0 noncritical condition, L = 1 critical

condition.
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conditionally randomized experiment ⇒ Y a
∐

A|L = 0 and Y a
∐

A|L = 1

Heart transplant study

8 individuals in noncritical condition

the risk on death among the treated is Pr(Y = 1|L = 0,A = 1) = 1
4

the risk on death among the intreated is Pr(Y = 1|L = 0,A = 0) = 1
4

12 individuals in critical condition

the risk on death among the treated is Pr(Y = 1|L = 1,A = 1) = 2
3

the risk on death among the untreated is Pr(Y = 1|L = 1,A = 0) = 2
3
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The observed risk = the counterfactual risks

Pr(Y = 1|L = 0,A = 1) = Pr(Y a=1|L = 0)

Pr(Y = 1|L = 0,A = 0) = Pr(Y a=0|L = 0)

Pr(Y = 1|L = 0,A = 1) = Pr(Y a=1|L = 0)

Pr(Y = 1|L = 0,A = 0) = Pr(Y a=0|L = 0)
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Goal: compute the causal risk ratio

Pr(Y a=1 = 1)

Pr(Y a=0 = 1)

numerator= risk if all the 20 subjects in the population had been treated:

in the 8 subjects with L = 0, the risk if all had been treated is 1
4

in the 12 subjects with L = 1, the risk if all had been treated is 2
3

the risk if all the 20 subjects had been treated: average of 1
4 and 2

3

weighted proportional of its size:

Pr(Y a=1 = 1) =
1

4
× 8

20
+

2

3
× 12

20
= 0.5
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denominator= risk if all the 20 subjects in the population had been

untreated:

in the 8 subjects with L = 0, the risk if all had been untreated is 1
4

in the 12 subjects with L = 1, the risk if all had been untreated is 2
3

the risk if all the 20 subjects had been untreated: average of 1
4 and 2

3

weighted proportional of its size:

Pr(Y a=0 = 1) =
1

4
× 8

20
+

2

3
× 12

20
= 0.5

Causal risk ratio

Pr(Y a=1 = 1)

Pr(Y a=0 = 1)
=

0.5

0.5
= 1
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Standardized risks in treated and untreated are equal to counterfactual

risk under treatment and no treatment, respectively:

Pr(Y a=1 = 1) =
∑
l

Pr(Y = 1|L = l ,A = 1)Pr[L = l ]

Pr(Y a=0 = 1) =
∑
l

Pr(Y = 1|L = l ,A = 0)Pr[L = l ].

Causal risk ratio

By standardization:

Pr(Y a=1 = 1)

Pr(Y a=0 = 1)
=

∑
l Pr(Y = 1|L = l ,A = 1)Pr[L = l ]∑
l Pr(Y = 1|L = l ,A = 0)Pr[L = l ]
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2.4 Inverse probability weighting
In this section, we compute causal risk ratio via inverse probability

weighting.

Data in Figure 2.1 can be displayed as a tree:

Left circle: 8 non critical, 12 critical ( probability). Of the 8 individuals in

the branch L = 0, 4 were untreated and 4 treated (conditional

probabilities). Of the 4 individuals in the branch L = 0 and A = 0, 3

survived and 1 died.
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The denominator of casual risk ratio Pr(Y a=0 = 1) is the counterfactual

risk of death had everybody in the population remained untreated:

4 out of 8 individuals with L = 0 were untreated, and 1 of them died.

How many deaths would have occurred had the 8 individuals with

L = 0 remained untreated?:2 deaths.

3 out of 12 individuals with L = 1 were untreated, and 2 of them

died. How many deaths would have occurred had the 12 individuals

with L = 1 remained untreated?: 8 deaths.

the risk if all the 20 subjects had been untreated:

Pr(Y a=0 = 1) =
2 + 8

20
= 0.5
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The first tree shows the population had everybody remained untreated.

The second tree shows the population had everybody treated.

Of course, these calculations rely on the condition that treated individuals

with L = 0, had they remained untreated, would have had the same

probability of death as those who actually remained untreated. This

condition is precisely exchangeability given L = 0.
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The numerator of casual risk ratio Pr(Y a=1 = 1) is the counterfactual risk

of death had everybody in the population been treated:

Pr(Y a=1 = 1) =
2 + 8

20
= 0.5

Casual risk ratio
Pr(Y a=1 = 1)

Pr(Y a=0 = 1)
=

0.5

0.5
= 1

Part 1 (Hernán & Robins) Causal inference 19th March, 2014 41 / 46



Technical Point 2.2

Formal definition of IP weights A subject’s Inverse Probability (IP)

weigh depends on her values of treatment A and covariate L.

Discrete variables A and L

Treated subject with L = l , receives the weight 1/Pr [A = 1|L = l ]

Untreated subject with L = l ′, receives the weight 1/Pr [A = 0|L = l ′]

In a conditionally randomized experiment, Pr [A = a|L = l ] > 0 for all l

such that Pr[L = l ] > 0.

Continuous variable A

We use the probability density function (PDF) fA|L(a|l) = f (a|l). The IP

weights are:

W A = 1/f (A|L)
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IP weighting and standardization

IPw uses the conditional probability of treatment A given the

covariate L.

STD uses the probability of the covariate L and the conditional

probability of outcome Y given A and L.

Both IPw and STD simulate what would have been observed if the variable

(or variables) L had not been used to decide the probability of treatment.

We often say that these methods ’adjust for L’ or ’control for L’.
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Technical Point 2.3

Equivalence of IP weighting and standardization

The standardization mean for treatment a is defined as∑
l

E[Y |A = a, L = l ]Pr[L = l ]

The IP weighted mean of Y for treatment a is defined as

E

[
I(A = a)Y

f (A|L)

]

E

[
I(A = a)Y

f (A|L)

]
=
∑
l

1

f (a|l)
{E[Y |A = a, L = l ]f (a|l)Pr[L = l ]}
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Technical Point 2.3

If further assume conditional exchangeability then both the IP weighted

and the standardized means are equal to the counterfactual mean E[Y a].

E
[

I(A=a)Y
f (A|L)

]
= E

[
I(A=a)Y a

f (A|L)

]
= E

(
E
[

I(A=a)Y a

f (A|L) |L
])

= E
(

E
[

I(A=a)
f (A|L) |L

]
E[Y a|L]

)
= E[E[Y a|L]] = E[Y a]

When treatment is continuos (unlikely in conditional randomized

experiments), effect estimates based on the IP weights W A = 1/f (A|L)

have infinite variance and thus cannot be used.
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If further assume conditional exchangeability then both the IP weighted

and the standardized means are equal to the counterfactual mean E[Y a].

E
[

I(A=a)Y
f (A|L)

]
= E

[
I(A=a)Y a

f (A|L)

]
= E

(
E
[

I(A=a)Y a

f (A|L) |L
])

= E
(

E
[

I(A=a)
f (A|L) |L

]
E[Y a|L]

)
= E[E[Y a|L]] = E[Y a]
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Why not finish this book here?

We have a study design (an ideal randomized experiment) that, when

combined with the appropriate analytic method (standardization or IP

weighting), allows us to compute average causal effects.

Unfortunately, randomized experiments are often unethical, impractical, or

untimely.

Frequently, conducting an observational study is the least bad option.

CONTINUARA. . .
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